Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Biobehav Rev ; 73: 255-275, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27914942

RESUMO

The gastro-intestinal peptide ghrelin has been assigned many functions. These include appetite regulation, energy metabolism, glucose homeostasis, intestinal motility, anxiety, memory or neuroprotection. In the last decade, this pleiotropic peptide has been proposed as a therapeutic agent in gastroparesis for diabetes and in cachexia for cancer. Ghrelin and its receptor, which is expressed throughout the brain, play an important role in motivation and reward. Ghrelin finely modulates the mesencephalic dopaminergic signaling and is thus currently studied in pathological conditions including dopamine-related disorders. Dopamine regulates motivated behaviors, modulating reward processes, emotions and motor functions to enable the survival of individuals and species. Numerous dopamine-related disorders including Parkinson's disease or eating disorders like anorexia nervosa involve altered ghrelin levels. However, despite the growing interest for ghrelin in these pathological conditions, global integrative studies investigating its role in brain dopaminergic structures are still lacking. In this review, we discuss the role of ghrelin on dopaminergic neurons and its relevance in the search for new therapeutics for Parkinson's disease- and anorexia nervosa-related dopamine deficits.


Assuntos
Dopamina/metabolismo , Grelina/metabolismo , Caquexia , Metabolismo Energético , Humanos , Recompensa
2.
ScientificWorldJournal ; 7: 1493-537, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17767365

RESUMO

Since life emerged on the Earth, the development of efficient strategies to cope with sudden and/or permanent changes of the environment has been virtually the unique goal pursued by every organism in order to ensure its survival and thus perpetuate the species. In this view, evolution has selected tightly regulated processes aimed at maintaining stability among internal parameters despite external changes, a process termed homeostasis. Such an internal equilibrium relies quite heavily on three interrelated physiological systems: the nervous, immune, and endocrine systems, which function as a permanently activated watching network, communicating by the mean of specialized molecules: neurotransmitters, cytokines, and hormones or neurohormones. Potential threats to homeostasis might occur as early as during in utero life, potentially leaving a lasting mark on the developing organism. Indeed, environmental factors exert early-life influences on the structural and functional development of individuals, giving rise to changes that can persist throughout life. This organizational phenomenon, encompassing prenatal environmental events, altered fetal growth, and development of long-term pathophysiology, has been named early-life programming. Over the past decade, increased scientific activities have been devoted to deciphering the obvious link between states of maternal stress and the behavioral, cognitive, emotional, and physiological reactivity of the progeny. This growing interest has been driven by the discovery of a tight relationship between prenatal stress and development of short- and long-term health disorders. Among factors susceptible of contributing to such a deleterious programming, nutrients and hormones, especially steroid hormones, are considered as powerful mediators of the fetal organization since they readily cross the placental barrier. In particular, variations in circulating maternal glucocorticoids are known to impact this programming strongly, notably when hormonal surges occur during sensitive periods of development, so-called developmental windows of vulnerability. Stressful events occurring during the perinatal period may impinge on various aspects of the neuroendocrine programming, subsequently amending the offspring's growth, metabolism, sexual maturation, stress responses, and immune system. Such prenatal stress-induced modifications of the phenotypic plasticity of the progeny might ultimately result in the development of long-term diseases, from metabolic syndromes to psychiatric disorders. Yet, we would like to consider the outcome of this neuroendocrine programming from an evolutionary perspective. Early stressful events during gestation might indeed shape internal parameters of the developing organisms in order to adapt the progeny to its everyday environment and thus contribute to an increased reproductive success, or fitness, of the species. Moreover, parental care, adoption, or enriched environments after birth have been shown to reverse negative long-term consequences of a disturbed gestational environment. In this view, considering the higher potential for neonatal plasticity within the brain in human beings as compared to other species, long-term consequences of prenatal stress might not be as inexorable as suggested in animal-based studies published to date.


Assuntos
Sistemas Neurossecretores/fisiopatologia , Estresse Fisiológico/fisiopatologia , Animais , Feminino , Humanos , Gravidez
3.
Psychoneuroendocrinology ; 32(2): 114-24, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17240075

RESUMO

The in utero environment is critical for initiating the ontogeny of several physiological systems, including the immune surveillance. Yet, little is known about adverse early experiences on the offspring's immunity and vulnerability to disease. The present work aimed at investigating the impact of restraint prenatal stress (PS) on the development and responsiveness of in vitro and in vivo cellular and humoral immunity of male progeny aged 7 weeks and 6 months. In adult 6-month-old rats, we detected increased circulating CD8(+)-expressing and NK cells in PS rats as compared to controls, associated with higher mRNA expression of IFN-gamma. In addition, in vitro stimulation with phytohemagglutinin-A induced an increase in both the proliferation of T lymphocytes and the secretion of IFN-gamma in PS rats. Interestingly, these alterations were undetectable in younger PS rats (7-week old), except for a slight increase in the mRNA expression of several pro-inflammatory cytokines in peripheral blood mononuclear cells. Moreover, in vivo neutralization of IFN-gamma in young rats had no effects in PS group. In conclusion, we report for the first time long-lasting pro-inflammatory consequences of PS in rats.


Assuntos
Sistema Imunitário/fisiologia , Imunocompetência/fisiologia , Inflamação/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Estresse Psicológico/imunologia , Animais , Separação Celular , Citocinas/biossíntese , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Imunoglobulinas/análise , Imunoglobulinas/biossíntese , Inflamação/patologia , Interferon gama/análise , Interferon gama/biossíntese , Neutrófilos/imunologia , Gravidez , Ratos , Ratos Sprague-Dawley , Restrição Física , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...